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ABSTRACT. In the field of spacecraft attitude control and stabilization,
the dual-spin maneuver has an important place. Here, we consider a problem
which is a multibody analog of the dual-spin problem. The dynamical
equations are derived using a modified form of the Euler-Lagrange equation
on the special orthogonal group SO(3). It is then shown that with a suitable
damping mechanism on one body and on the joint, an asymptotic stability

theorem can be concluded by using the LaSalle invariance principle .
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1 Introduction

In designing a communication satellite or an interplanetary probe, engineers are often
faced with the requirement that the spacecraft be able to maintain a fixed orientation
relative to some inertial frame. The dual-spin technique is a simple, commonly used
technique for meeting this requirement. A dual-spin spacecraft consists of the spacecraft
body and on-board motor-driven symmetric rotors. In the presence of a suitable damping
mechanism and for sufficiently high rotor velocities, the attitude acquisition can be
achieved. The final state is a steady spin about a fixed axis. This single rigid body
dual-spin problem has been studied extensively before, e.g. [8] [7] [s] and the references

therein. A rigorous proof of asymptotic atability can be found in [8].

In this paper, we study a multibody analog of dual-spin problems. We consider a
system (see Fig. 1) consisting of two rigid bodies connected by a ball-in-socket joint. There
are also three rigid symmetric rotors mounted on the centers of mass of each body. One set
of the rotors, called driven rotors, are set in a constant relative motion to the carrier body.
The other set of rotors carried by the second body provide damping torques to the overall
motion. These are called damping rotors. We shall prove that with an additional damping
mechanism on the ball-in-socket joint, the motion is asymptotically stable and approaches
the stable equilibria of the coupled system. In deriving the dynamical equations, we will
use explicit representations of higher order tangent bundles of thé special orthogonal group
SO(3).

In the following, we shall describe the system configuration and compute the
Lagrangian of the system in Section 2. We then discuss a version of the Euler-Lagrange
equation for the motion on the special orthogonal group SO(3) in Section 3. We will
generalize this approach to derive the dynamical equations for our problem. In Section 5
we shall prove an asymptotic stability theorem by using a Lyapunov function and invoking

the LaSalle invariance principle.

The problems of multibody systems in space are very complicated. The dynamical
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behaviors of these systems are highly coupled, highly nonlinear, and poorly understood.
The works of [13) [10] [6] help us to understand the phase portraits of problems such
as the one discussed in this paper. Also, the underlying control problems associated to
multibody systems are quite complex. Controllability questions for rigid bodies with and
without rotors were addressed in [5] [3] [4] [2]. Similar results for multibody problems
are desirable. Here we simply set up the Lagrangian framework, formulate a basic control
problem and then prove an asymptotic stability theorem for a multibody system under a
dual-spin feedback law. The questions about attitude acquisition and rates of convergence

are under investigation and we hope to report on these in a later paper.

2. System Configuration
We consider a system of two rigid bodies connected by a three-degree-of-freedom
spherical joint with rotors mounted on each body. The system under consideration is

shown in Fig. 1. The inertial observer is at the center of mass of the system of bodies.

Ignoring the specific kinematic relationships between the rotors and the bodies, the

unconstrained configuration space @, is parametrized by the attitudes of these eight

bodies,
Qu = { (B1, S1, S2, S3, Bz, D1, Dy, Ds) },
= S0(3) x (50(3))° x S0(3) x (50(3))°.
To account for the body-rotor relations, we have the following constraints between the
attitudes,
S; = B1R(zi,8;), 1=1,2,3,

Di = BZR(yl'v ¢i)7 ¢ = 1»2a3'

where R(z,,6;) is the rotation about the z; axis by the angle 6;, e.g.
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Figure 1. Two Rigid Bodies with Rotors

cos 6; sin 63 0
R(z3,6;) = | —sinf; cosf; 0].
0 0 1

With these constraints, the configuration space is then

Q = S0(3) x (8')* x SO(3) x (51)°.

Assume, for convenience, the centers of mass of rotors §; are at the center of mass
of carrier body B;, and the centers of mass of rotors D; are at the center of mass of the
carrier body B,. It can be easily found from Fig. 1 that we have the following kinematic

constraints,



T, i=1’2,33

T‘s..

rp, = ra, 1=1,2,3,

r; = ry — Bidy + Bad,
(mi + mg)r = —(my + mp) ry
with
ms = ms, + ms, + Mg,,

mD = mDI +mD2 + mDa’

where my, ms,, mg, mp, are the masses of the corresponding bodies. By using standard

techniques, the total kinetic energy of the system can be written as
1 ] 1 .. 1 ) 1 N
K = 5 m1” ™y ”2 + 5 tr (Blle{) + "2‘ mgll ) ”2 + :?-tr (BzIzB;)

3
+ Z(-;-ms.-n o I+ %trw'.fs..s‘f))

=1

3
1 . 1 . .
+ ; (ng;” Tp; ”2 + §tr(DiIDaD:?)) )
where I, I, Is;, Ip, arethe coeflicients of inertia of the corresponding bodies. Assuming
there is no potential energy, the Lagrangian on the tangent bundle to the unconstrained

configuration space (), can be written as

.1 ) . 1 . . 1 . .
L = § ir (Bl I B;) + 5 tT(Bz I B;) + -2- € " B,d, — Bad, ”2

LA o (2.1)
+ 3 (tr(s.' Is, ST) + tr(D; Ip, D;’r))’
=1
where
_ (m; + ms)(mz + mD)
m1+ms+m2+mD.
Now we let



where the map ° is the canonical isomorphism from R? to so(3), the skew-symmetric

matrices. Since S; = Bi1R(z,,6;), we have

5',- = BIR(I,',G,') + B]R(:C,',O.’) = BI(QI +§:’)R(Ii»0i)°

and thus

s, = R(zi,0:,)" + s,

where

We can then write

tr(S; Is, ST) = tr ((Ql + 8:)R(z:,6:)Is, R(zi,6:)" (1 + 5:')T) :

We naturally assume that the rotors have material symmetry about the axis of rotation,

l.e.

R(I,‘,G,‘) IS.’ R(x,',e,)T = IS."

and we get
tr(S;i Is, ST) = tr ((f)1 + 5)Is. (0 + §.~)T) = (1 +si, Is,(Q +5i) ).

Si:miiar derivations can be applied to the rotors D;. By substituting these formulae in
(2.1), the Lagrangian, L : TQ — R, can then be written as
I/(Bl’ 0,‘, B27 ¢i7 Ql, éia QZa ¢zi’ 1= 172’3)
1 1 . R
'—=5(Ql, Ji ) +5 (Q2, J2 Q2 ) + € (S, d B B; d; 1) (2.2)
1

+2(6,1%0)+ (4, I°0) + 5(6,1%)+<n2, IP% ).
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with

3
Ji=h +edi di+ ) I

=1
3

Jo =1 + €¢Eéz+ ZID‘
=1

I° = diag((ls, N, (Is,)2 a(153)3)’

I? = diag((Ip,)1 ,(Ip,)z »(Ips)3),
6 é1
e = 92 ’ @ = ¢2

63 P3
where (Is;); denotes the j-th diagonal element in the moment of inertia matrix Is,. The
physical meaning of J; is that it is the total moment of inertia of B; plus rotors referred
to the joint. This Lagrangian will be used later as a basic entity to derive dynamical
equations. Qur approach to the derivation of the dynamics is novel. We illustrate this by

a simplified example in the next section.

3. Euler-Lagrange Equation for Special Orthogonal Group SO(3)

We denote an element in the special orthogonal group SO(3) by a 3 x 3 matrix 4
satisfying the identity ATA = I and det(A) = 1. The elements in the tangent bundle
TSO(3) are usually expressed as (A, AQ). This is a global representation for the tangent
bundle of SO(3). On the other hand, we recall that the classical Euler-Lagrange equations
are based on local coordinates. In [11], Vershik and Faddeev discuss an invariant form of
the Lagrange-D’Alembert Principle which gives the classical Euler-Lagrange equation with
external forces in local coordinates. Since our representation for TSO(3) is global, it is
useful to write the form of Lagrange-D’Alembert Principle in that representation. We now
show how to derive the dynamical equations for motions on SO(3).

Lagrangian Mechanics is about second order equations. Thus we need to find a
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representation of the second tangent bundle on SO(3). We first make the following
observation.

%AQ = AQ+ 40 = AOOQ+ Q).

Thus a special second tangent vector must be of the form
(4, 40,40, 400 + s’z)) .
In general, let (Aid, W) € T4 46)TSO(3). In order to have this vector generate a curve

(Ae“‘,Ae""(Q + tw)) € TSO(3),

which passes through (A4, AQ) when t = 0, we must have

d
W=3

At (L +td) = A>AQ + v).

t=0

Any element in TTS0O(3) can therefore be written as
(4,40, 42,42 + 0)). (3.1)
Next we look for a canonical representation for an element in T*TS0O(3). First, we note

that the trace pairing

<AB>= %tr(ATB),

provides us a standard way to define the elements in T*S0(3), i.e. Ad € T;50(3), and
1
< Aa,Ad > = Etr(&TATAﬁ) = (a, u),

where ( a, u ) denotes the Euclidean inner product. Letting w(A,A) = (a,B) €

("A'A)TSO(?)),
w(A, A) (Aﬁ, AR + tI))) = %tr(aTAﬁ) + %tr(ﬂTA(ﬁQ + ).

In order to have a,b € R?, such that



w(A, A) (Aﬁ,A(ﬁfl-&-u‘J)) = (a,u) + (b w),

we ask
o = A(bQ + &)
B = Ab.

Thus we obtain the representation for any element in T*TSO(3),

(4,40, 40 + &), 4D). (3.2)

These global representations (3.1)-(3.2) of the second tangent bundle and the dual
of the second tangent bundle on SO(3) prove to be useful in finding the derivatives or
variations of a function (Lagrangian) on TSO(3) and in deriving the reduced Poisson
bracket. In the following, we state the Lagrange-D’Alembert Principle in terms of these
representations. Following an argument similar to the one used in deriving the formula in

local coordinates (see [1], pp. 215), we get,

THEOREM 3.1

On TSO(3), let a system be described by a Lagrangian L. Lagrange-d’Alembert
Principle in the invariant form [11] applied to the motions on SO(3) gives us the Euler-

Lagrange equation,

< % D,L(A, AQ), Ai > = < D, L(A, AQ), A2 > + < a, Ai >, (33)

V Ai € TASO(3).

where a is the external force. (Here D;, D, are the usual partial Frechét differentials.)
i
The key observation here is that with these representations, the space of vertical
tangent vectors is isomorphic to the fibers in TSO(3). We omit the details of the above
derivation. The only difference between (3.3) and the classical Euler-Lagrange equation is

in the ezplicit interpretations of the duality pairing. In the next section, we will use
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the procedure of this section as a model for working out the dynamics. We remark
that, under this framework, we may mix the local coordinate on some manifold and the
parametrizations for SO(3) in deriving the equations of motion. This is very helpful
when we are dealing with systems which have a mixed configuration space (e.g. Cartesian

products of a Lie group and a smooth manifold).

4. Dynamical Equations

With the Lagrangian formula (2.2), we now apply Theorem 3.1 to derive the
dynamical equations for the multibody dual-spin problem. Let L be the Lagrangian

function expressed in terms of the variables

(Bla@aB%QaBlaév B2’é) € TQ

First, we need to find the differential of L in a form analogous to (3.2). It can be found by
the following procedure. Let (Uy,Us,Us, Uy, Wy, Wy, W3, Wy) € T(Bl,e,Bg,d»,Bl ,é,Bz,é)TQ’

which can be written as the form, cf. (3.1),

(B: 11, ug, By 3, uq, Bl(ﬁlﬂl + 1), wo, By (11282 4 1h3), wy).

It generates a curve in T'Q given by

(Blc'i‘, O +tuy, Bye'*? &4 tuy, Ble"“(ﬁl +t1b,), O +tw,, Bgc'ﬁ’(ﬁg +t3), <i’+tw4).

Here we have
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dL'(Ul’ U2’ U31 U{, Wla W27 W3, Wl)
d

== L(Ble"z’, © + tuy, Bye'™? & + tuy,

t=o0

B]Cm'(ﬁl + ttf)l), 6 + twy, Bgeﬁ‘z(ﬂg -+ t'lf);;), @ + tw.;)

:=% L(Bie'™, © + tuy, B3, & + tu,,

t=0

Q + twy, © +twy, Dy + tw, <i>+tw4)

- oL - . oL
= < DBlL, Bia; > +(‘a—é‘, UQ)+ < DB,L,BzUs > +(-6—6, u4)

2 )+ () (B )+ (2, )
aQ], 1 6("'), 2 602’ 3 BQ, 4/-
The canonical form for dL(B;, ©, B, ®, B, G,Bg, <I>) is, cf. (3.2),

(31(3191 +ay), az, 32(3302 + as), aq, Biby, by, Bybs, b4)-

Let Nj, N; be given by the formula

DB,E' = BN, Dp,L = B,N;,

we have
oL oL
ay = Nl, Qg = -56, asz = N3, ag = %',
oL oL oL oL
b = — = b = =T b = -,
ey T BTy M T %

and we get the form of elements in (3.3),

3L . .. OL oL » .. oL
DL = (31(5?191 + Ny), 75" Bz(—aﬁ;ﬂz-l‘Ns), 53),
o _ (4.1)
oL OL 8L 0oL
DL = | By=—, —, Byoer, — | .
: ( 100, 86’ "o, a¢)

Next we model the external force a. Let T’ be the torque on the ball-in-socket joint in

the body 2 frame, Ts,, Tp, denote the torques exerted on the driven rotors and damping
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rotors respectively. Letting B = B B;, the shape of the system, we can write a in the

form

a = (Bl(—ﬁV), TS, B, T, TD).

s (TSI )1 D (TDI )1
T° = (Ts, )2 ) TV = (Tp, )2 |-
(Ts, )s (Tps)s

with the notation (Ts,); denoting the j-th component of the vector T, .

where

We are ready to apply formula (3.3). The first component is worked out here. The

others can be found in a similar way. From

. oL d oL L . . . ==
By — B—— - By | =—% +N ~BTJ = 0,
thaa T P @an, ‘(aﬂl 1N ))
we get
d J
E?.Af] = —Ql XM1+N1—BT ,
where M, = 589—21—. This can be rewritten in terms of £2;, etc. Explicitly, we get the

dynamical equations of the system in terms of variables in TQ.

10 + IS0 + edBdy), = -0y x (L + IS0 ) —ed BQ,d,Q, — BT,
L0 + IP® + edoBTdiy = —Qy x (2 + IP® ) —edo BT(,d 0 + T,
IS + 6) = T3,
I°Q, + &) = TP,
B, = B{,,

Bz = BzQz.

(4.20)
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For the realization of the multibody dual-spin control structure, the following feedback laws

are used,
TS = I5Q,
TP = — %, (4.2b)
T’ = —4(9: - B"(),

where §, and v are positive definite matrices. The first equation in (4.2b) makes the
relative angular velocities between the driven rotors and B; be constants. The other
two equations signify damping torques on the damping rotors and the joint. With these

feedback laws and the following transformation of coordinates to conjugate momenta,

p1 =i + ed Bd; Q, (4.3q)
p =1I1°9, (4.3b)
ps = (2 —IP)Q + edy BT di 4, (4.3¢)
pe =IP(Q + @), (4.3d)

we can express the dynamical equations (4.2) in terms of p; variables,

pr = —ux(p + p2)—c¢ ‘21/61332 Qy — (S — B),

p2 = 0.

py = —p x(ps + pi)—€dy BT dy §y — (- BT+ 52, (44)
Pa = -8,

B = BO, - 4B

Here 1, , $2s , and $ are the expressions of 21, 2, and % in terms of pi, respectively.

These expressions can be found through (4.3).
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5. Asymptotic Stability
Equations (4.4) describe the dynamical behavior of the system under investigation.
We are now ready to establish an asymptotic stability theorem. First, in terms of the

conjugate momentum variables (4.3), the Lagrangian can be written as
= 1, 1, 51 1, ~
L =5(, p)+50(I7) 7 p2, p2 ) + (€02, p3)

+ s(IP) pay pa )+ (S, p2 ).

BN =

We define the function

V=L-(Qp) (5.1)

It can be shown that the directional derivative of V along a trajectory is

av S - T \
S = —(8,88) — (S~ BT0,4(0 - BT)).

Thus this function is a Lyapunov function candidate. This is an analog of the core energy
used in [7] to justify the energy-sink method and used in [8] to prove asymptotic stability.
In the absence of damping (i.e. ¥ = B = 0 ), the system is a hamiltonian system with
hamiltonian function V. The hamiltonian structure has been worked out in the ongoing
Ph.D. dissertation of L.-S. Wang [12]. It is a generalization of the one derived by Grossman,
Krishnaprasad, and Marsden in [6]. The hamiltonian structure is noncanonical.

In the following, we shall use an argument similar to the one in [8] to do the stability

analysis. It can be shown that the function

lpr + p2 + B(ps + po)||°

is invariant under the motion. It is the Casimir invariant of the hamiltonian limit. Since
p2 is a constant along any trajectory (as achieved by the feedback law (4.2b)), we define

the momentum variety

ME, = {(p1,ps,ps, B) € R’ x SO(3) : |Ip1 + p2 + B(ps + po)|I* = #*}, (5.3)
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which is parametrized by p2, and p. The dynamical motion leaves the momentum variety

invariant. This will be the domain of our analysis later on. Let

dv
R = { (PlvPS’PAl,B) € M:z : — =0 }’

dt (5.4)
= { (Pl,Pa,P«i,B) € M:z : (ID)_lp4 —()2 = O, ﬁ2 _BTQI =0 }

It can be shown that R is parametrized by (p4,p, B) as

pr =p—(BJ2+edy B dy))IP) pa,
A A ) ) (5.5)
ps =edy BY dyJ'p + (J; —IP —e dy, BT dyJ'BJ)(IP) py,

where p satisfies ||p + p2||> = u®. From (4.4), the set of equilibria in M} can be written

as
S = {Grppa ) € R x500) - lp+ pul? =
pr=p—(BJy+edy B dy)(IP) py,
ps=¢edy BT dyJ;'p + (Jo—IP —ed; BT dyJ;7 BJ,)(IP) py,
(IP)ps -y = 0, Q,-B"Q; = 0,
- x(m + p )—631/513&2 Q, =0,

— U x(ps + ps)—€dy BT d Q1=0}

Now we characterize the maximal invariant set in R. We ask that the directional derivative
of the functions (I?)~1p, —Q, and Q, — BTQ); along the trajectory be 0. It can be shown

that this condition is equivalent to
0, =0 {p =0
From (4.3), we have
P1 _ ‘Jl . éleéz)(Ql) = J (Q])
D3 - e d; BT d, Jy — ID 92 92 )

After further manipulations, we obtain the formula,
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d (@1) = J! ( —ﬁl X(p1 + p2)—¢ Jl ﬁ113622 ﬁz — € 31332522 )
dt )

Q2 - 62 x (p;; + py )-— € Jz ﬁgBT (il Ql — € J2BT(21Q1 + ﬁ@
On R, B = 0, & = 0, we thus proved that the maximal invariant set is exactly the
same as the set ), ,, of equilibria for (4.4). From LaSalle’s theorem [g], we know that

a trajectory of motion will approach the maximal invariant set in the limit. We can thus

conclude the following theorem.

THEOREM 5.1

The mechanical system (4.4) asymptotically approaches one of the stable equilibria

in Y up,,or the equilibria of the limiting hamiltonian system.
i
The limiting motions of the system, i.e. the equilibria, are exactly the same notion
as the relative equilibria discussed in [13]. The techniques for finding the relative equilibria
there can be applied to our problem by additionally including one gyroscopic term in the

augmented potential function.

6. Conclusions

We established a version of the Euler-Lagrange equation for the motions on SO(3)
from the invariant form of the Lagrange-D’Alembert Principle. This scheme can be used to
derive dynamical equations for many-rigid-body problems. It can also be applied to certain
continuum mechanical problems, e.g. the special Cosserat rod. We applied the method
to a multibody analog of the classical dual-spin problem and obtained the dynamical
equations. It is then proved that with a damping mechanism on the ball-in-socket joint
and the damping rotors, we have asymptotic stability. The driven rotors are expected to

perform the role of attitude acquisition. This problem will be studied further in the future.
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